CIRCULAR ECONOMY IN TEMPORARY EXHIBITION DESIGN

Document Type : Specialized scientific research papers

Author

Decor Department, Interior architecture major, Faculty of Fine Arts, Alexandria University, Alexandria, Egypt

10.47436/jaars.2025.362887.1239

Abstract

Interior architecture has embraced sustainability as a goal to reduce negative environmental impact. However, waste from materials and structures has accumulated, causing ecological imbalance. Therefore, design has recently moved beyond sustainability to seek innovative solutions to mitigate this damage. Temporary exhibition design occupies a large sector within the interior design field, which consumes large quantities of renewable and non-renewable materials and tools. This research paper presents a systematic study that combines quantitative and qualitative analysis of the circular economy implementation systems in interior architecture. The quantitative aspect included clarifying the contributions of the circular economy pillars to waste management in the fields of construction and interior design, from regenerative design to reuse and recycling. The qualitative aspect focused on the innovative dimensions of interior design, by enabling the use of materials relevant to temporary exhibition designs to retain their residual value, integrating natural elements for reuse in other regenerative designs, or achieving new functional purposes. This enhances sustainability and reduces resource waste, providing reverse logistical benefits that contribute to the development of interior architecture in the future.

Keywords

Main Subjects


Benachio, G. L. F., Freitas, M. D. C. D., & Tavares, S. F. (2020). Circular economy in the construction industry: A systematic literature review. Journal of cleaner production, 260, 121046.‏
BAO, J. (2019). Whole life cycle oriented temporary exhibition design for sustainability.‏
Maneschi, A., & Zamagni, S. (1997). Nicholas Georgescu‐Roegen, 1906–1994.‏
Issac, A. L. (2024). Sustainability at the Crossroads of Global Showcases: Balancing Economic Progress and Environmental Conservation in Expo 2020 Dubai. In Sustainable Tourism, Part B: A Comprehensive Multidimensional Perspective (pp. 1-18). Emerald Publishing Limited.‏
Arrigoni, A., Zucchinelli, M., Collatina, D., & Dotelli, G. (2018). Life cycle environmental benefits of a forward-thinking design phase for buildings: the case study of a temporary pavilion built for an international exhibition. Journal of Cleaner Production, 187, 974-983.‏
Georgescu-Roegen, N. (1977). The steady state and ecological salvation: a thermodynamic analysis. BioScience, 27(4), 266-270.‏
Moreau, V., Sahakian, M., Van Griethuysen, P., & Vuille, F. (2017). Coming full circle: why social and institutional dimensions matter for the circular economy. Journal of Industrial Ecology, 21(3), 497-506.‏
Chen, C. W. (2022). Approaching sustainable development goals: Inspirations from the Arts and Crafts movement to reshape production and consumption patterns. Sustainable Development, 30(6), 1671-1681.‏
McDonough, W., & Braungart, M. (2010). Cradle to cradle: Remaking the way we make things. North point press.‏
Council, U. G. B. (2005). LEED: Leadership in energy and environmental design. Washington, DC: US Green Building Council. Website accessed April, 6, 2024.‏
Copeland, S., & Bilec, M. (2020). Buildings as material banks using RFID and building information modeling in a circular economy. Procedia Cirp, 90, 143-147.‏
Wuttke, J. (2018). The Circular Economy Package of the European Union. Factor X: Challenges, Implementation Strategies and Examples for a Sustainable Use of Natural Resources, 251-262.
Ogunmakinde, O. E., Sher, W., & Egbelakin, T. (2021). Circular economy pillars: a semi-systematic review. Clean Technologies and Environmental Policy, 23, 899-914.‏
Rahla, K. M., Mateus, R., & Bragança, L. (2021). Implementing circular economy strategies in buildings—from theory to practice. Applied System Innovation, 4(2), 26.‏
MacArthur, E., Zumwinkel, K., & Stuchtey, M. R. (2015). Growth within: a circular economy vision for a competitive Europe. Ellen MacArthur Foundation
Malik, Ciaran. (2021). Regenerative Design in Buildings.
Toniolo, S., Camana, D., Guidolin, A., Aguiari, F., & Scipioni, A. (2021). Are design for disassembly principles advantageous for the environment when applied to temporary exhibition installations?. Sustainable Production and Consumption, 28, 1262-1274.‏
Núñez, M., García-Lozano, R., Boquera, P., Gabarrell, X., & Rieradevall, J. (2009). Temporary structures as a generator of waste in covered trade fairs. Waste management, 29(7), 2011-2017.‏
Kilner, J. A., Skinner, S. J., Irvine, S. J., & Edwards, P. P. (Eds.). (2012). Functional materials for sustainable energy applications. Elsevier.‏
Quan, Z., Lu, H., Zhao, W., Zheng, C., Zhu, Z., Qin, J., & Yue, M. (2022). A review of dust deposition mechanism and self-cleaning methods for solar photovoltaic modules. Coatings, 13(1), 49.‏
عبد الخالق، & أمل. (2023). الخامات المستدامة وتأثيرها على التصميم الداخلي التجاري. مجلة الفن والتصميم, 1(1) , 1-31.
Pitti, A. R., Espinoza, O., & Smith, R. (2020). The case for urban and reclaimed wood in the circular economy. BioResources, 15(3), 5226.‏
https://www.moso-bamboo.com/ ) accessed May, 2025).
https://link.springer.com/article/10.1007/s40243-024-00270-x Sustainable construction: the use of cork material in the building industry  ) accessed May, 2025).
 accessed May, 2025).
https://www.tech-mag.net الطلاء-الحيوي-ينتج-الأكسجين-ويحتجز-ثا/ ) accessed May, 2025).
Quan, Z., Lu, H., Zhao, W., Zheng, C., Zhu, Z., Qin, J., & Yue, M. (2022). A review of dust deposition mechanism and self-cleaning methods for solar photovoltaic modules. Coatings13(1), 49.‏  ( May, 2025).